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Process Concept 
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Process Concept 

 An operating system concurrently executes a variety 
of programs (e.g Web browser, text editor, etc) 

 Program — ______________________________ 
 Process — ________________________________________ 

 A process includes: 
 Code segment (text section) 
 Data section— global variables 
 Stack —temporary local variables and functions 
 Heap —dynamic allocated variables or classes 
 Current activity (program counter, register contents) 
 A set of associated resources (e.g. open file handlers) 

active entity: a program in execution in memory 
passive entity: binary stored in disk 
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Process in Memory 

temporary data (e.g. 
function parameters, 
return addresses,  
local variables) 

global variables 

code 

dynamic allocation  
(e.g. class object,  
pointer object) 
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Threads 
 A.k.a lightweight process: 

basic unit of CPU utilization 

 All threads belonging to the 
same process share  
code section, data section, 

and OS resources (e.g. open 
files and signals) 

 But each thread has its own  
 thread ID, program counter, 

register set, and a stack 
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Process State 
 States 
New: the process is being created 
 Ready: the process is in the memory waiting to be 

assigned to a processor  
 Running: instructions are being executed by CPU 
Waiting: the process is waiting for events to occur 
 Terminated: the process has finished execution 
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Diagram of Process State 

 Only one process is running on any processor at any instant 
 However, many processes may be ready or waiting 

New 

Waiting 

Ready 

admitted 

Running 

scheduler dispatch 

interrupt 

Terminated exit 

I/O or event wait I/O or event completion 
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Process Control Block (PCB) 
Info. associated with each process 
 Process state 
 Program counter 
 CPU registers 
 CPU scheduling information  
 (e.g. priority) 
 Memory-management information 
 (e.g. base/limit register) 
 I/O status information 
 Accounting information 

To next PCB 
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executing 

executing 

executing 

interrupt or system call 

      process P0               operating system             process P1   
interrupt or system call 

idle 

idle 

idle 

save state into PCB0 

reload state from PCB1 

. . . 
. . . 

save state into PCB1 

reload state from PCB0 

Context Switch 
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Context Switch 
 Context Switch: Kernel saves the state of the old 

process and loads the saved state for the new process 
 Context-switch time is purely overhead 
 Switch time (about 1~1000 ms) depends on 

 memory speed 
 number of registers 
 existence of special instructions  

a single instruction to save/load all registers 
 hardware support 

multiple sets of registers (Sun UltraSPARC – a context 
switch means changing register file pointer) 
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Review Slides (1) 
 What’s the definition of a process? 
 What’s the difference between process and 

thread? 
 What’s PCB? its contents? 
 Process state 
 Program counter 
 CPU registers 

 The kinds of process state? 
New, Ready, Running, Waiting, Terminated 

 What’s context switch?  
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Process Scheduling 
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Process Scheduling 
 Multiprogramming: CPU runs process at all 

times to maximize CPU utilization 

 Time sharing: switch CPU frequently such that 
users can interact with each program while it 
is running 

 Processes will have to wait until the CPU is 
free and can be re-scheduled 
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Process Scheduling Queues 
 Processes migrate between the various 

queues (i.e. switch among states)  

 Job queue (New State) – set of all processes 
in the system 

 Ready queue (Ready State) – set of all 
processes residing in main memory, ready 
and waiting to execute 

 Device queue (Wait State)– set of processes 
waiting for an I/O device 
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Process Scheduling Queues 

I/O queue 
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Process Scheduling Diagram 

ready queue CPU 

I/O request I/O queue I/O 

time slice 
expired 

fork a child child 
executes 

child 
terminates 

wait for an  
interrupt 

INT 
occurs 
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Schedulers 
 Short-term scheduler (CPU scheduler)– selects which process 

should be executed and allocated CPU (Ready state  Run state) 
 Long-term scheduler (job scheduler) – selects which processes 

should be loaded into memory and brought into the ready queue 
(New state  Ready state) 

 Medium-term scheduler – selects which processes should be 
swapped in/out memory (Ready state  Wait state) 

CPU 

Memory 

Job4 
Job3 
Job2 
Job1 

Operating System CPU Scheduling 
Job Scheduling 

Job pool 

Disk 

Job swapping 
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Long-Term Scheduler 

 Control degree of multiprogramming 

 Execute less frequently (e.g. invoked only when a 
process leaves the system or once several minutes) 

 Select a good mix of CPU-bound & I/O-bound 
processes to increase system overall performance 

 UNIX/NT: no long-term scheduler 
 Created process placed in memory for short-term scheduler 
 Multiprogramming degree is bounded by hardware 

limitation (e.g., # of terminals) or on the self-adjusting 
nature of users 
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Short-Term Scheduler 
 Execute quite frequently (e.g. once per 100ms) 

 Must be efficient:  
 if 10 ms for picking a job, 100 ms for such a pick, 
 overhead = 10 / 110 = 9% 

short-term long-term 
ready queue CPU 

I/O request I/O queue I/O 
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Medium-Term Scheduler 
 swap out: removing processes from memory to reduce 

the degree of multiprogramming 
 swap in: reintroducing swap-out processes into memory  
 Purpose: _________________,______________ 
 Most modern OS doesn’t have medium-term scheduler 

because having sufficient physical memory or using 
virtual memory 

improve process mix free up memory 
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Operations on Processes 
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Tree of Processes 
 Each process is identified by a unique 

processor identifier (pid) 
sched 
pid=0 

init 
pid=1 

pageout 
pid=2 

fsflush 
pid=3 

intd 
pid=140 

dtlogin 
pid=251 

Csh 
pid=7778 

Csh 
pid=1400 

ls 
pid=2123 

Netscape 
pid=7785 

cat 
pid=2536 

parent of p3 

child of p0 

UNIX: “ps -ael” will list complete 
info of all active processes 
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Process Creation 
 Resource sharing 

 Parent and child processes share all resources 
 Child process shares subset of parent’s resources 
 Parent and child share no resources  

 Two possibilities of execution 
 Parent and children execute concurrently 
 Parent waits until children terminate 

 Two possibilities of address space 
 Child duplicate of parent, communication via sharing variables 
 Child has a program loaded into it, communication via 

message passing 
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UNIX/Linux Process Creation 
 fork system call 

 Create a new (child) process 
 The new process duplicates the address space of its parent 
 Child & Parent execute concurrently after fork 
 Child: return value of fork is 0 
 Parent: return value of fork is PID of the child process 

 execlp system call 
 Load a new binary file into memory – destroying the old code 

 wait system call 
 The parent waits for one of its child processes to complete 
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UNIX/Linux Process Creation 
 Memory space of fork(): 

 Old implementation: A’s child is an exact copy of parent 
 Current implementation: use copy-on-write technique to 

store differences in A’s child address space 

Originally 

free memory 

B 

free memory 

A 
kernel 

free memory 

B 

free memory 

A 
kernel 

A’s child 

After A does 
an fork 

free memory 

C 

B 

free memory 

A 
kernel 

After the child 
does an execlp 
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UNIX/Linux Example 
#include <stdio.h> 
void main( ) 
{ 
    int A; 
    /* fork another process */ 
    A = fork( ); 
 
    if (A == 0) { /* child process */ 
       printf(“this is from child process\n”); 
       execlp(“/bin/ls”, “ls”, NULL); 
 
    } else {  /* parent process */ 
       printf(“this is from parent process\n”); 
       int pid = wait(&status); 
       printf(“Child %d completes”, pid); 
    } 
    printf(“process ends  %d\n”, A); 
} 

Output: 
this is from child process 
this is from parent process 
a.out hello.c readme.txt 
Child 32185 completes 
process ends 32185 
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Example Quiz:  
 How many processes are created? 
#include <stdio.h> 
#include <unistd.h> 
int main() { 
 for (int i=0; i<3; i++){ 
  fork(); 
 } 
 return 0; 
} 
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P0 

P0 P1 

P0 P2 P1 P3 

P0 P4 P2 P5 P1 P6 P3 P7 
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Process Termination 
 Terminate when the last statement is executed or 

exit() is called 
 All resources of the process, including physical & virtual 

memory, open files, I/O buffers, are deallocated by the OS 

 Parent may terminate execution of children 
processes by specifying its PID (abort) 
 Child has exceeded allocated resources 
 Task assigned to child is no longer required 

 Cascading termination:  
 killing (exiting) parent  killing (exiting) all its children 
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Review Slides (2) 
 What’s long-term scheduler? features? 
 What’s short-term scheduler? features? 
 What’s medium-term scheduler? features? 
 What’s the different between duplicate 

address space and load program? Their 
commands? 
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Interprocess 
Communication (IPC) 
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Interprocess Communication 
 IPC: a set of methods for the exchange of data 

among multiple threads in one or more processes 
 Independent process: cannot affect or be affected by 

other processes 
 Cooperating process: otherwise 
 Purposes 

 information sharing 
 computation speedup (not always true…) 

 convenience (performs several tasks at one time) 

 modularity 
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Communication Methods 
Msg Passing Shared Memory  Shared memory: 

 Require more careful user 
synchronization 

 Implemented by memory 
access: faster speed 

 Use memory address to 
access data 

 Message passing:  
 No conflict: more efficient  
 for small data 
 Use send/recv message 
 Implemented by system call:  
 slower speed  
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Communication Methods 
 Sockets: 

 A network connection 
identified by IP & port 

 Exchange unstructured 
stream of bytes 

 Remote Procedure Calls:  
 Cause a procedure to 

execute in another 
address space 

 Parameters and return 
values are passed by 
message 

Server 
(161.25.19.8) 

Socket 
(161.25.19.8:80) 

Client 
(146.86.5.20) 

Socket 
(146.86.5.20:1625) 

val = server.method(A,B) bool method(A,B){ 
  ……….. 
} 

Client Server 

A, B, method 

Boolean return value 
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Interprocess Communication 

 Shared Memory 
Message Passing 
 Socket 
 Remote Procedure Calls 
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Shared Memory 
 Processes are responsible for… 
 Establishing a region of shared memory 

Typically, a shared-memory region resides in the address 
space of the process creating the shared-memory segment 
Participating processes must agree to remove memory 
access constraint from OS 

Determining the form of the data and the location 
 Ensuring data are not written simultaneously by 

processes 
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Consumer & Producer Problem 

in 

out 

 Producer process produces information that is 
consumed by a Consumer process  

 Buffer as a circular array with size B 
 next free: in 
  first available: out 
  empty: in = out 
  full: (in+1) % B = out 

  The solution allows at most (B-1) item in the buffer 
 Otherwise, cannot tell the buffer is fall or empty 
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/*producer*/ 
while (1) { 
 while (((in + 1) % BUFFER_SIZE) == out) 
  ; //wait if buffer is full 
 buffer[in] = nextProduced; 
  in = (in + 1) % BUFFER_SIZE; 
} 
/*consumer*/ 
while (1) { 
 while (in == out); //wait if buffer is empty 
 nextConsumed = buffer[out]; 
  out = (out + 1) % BUFFER_SIZE; 
} 

Shared-Memory Solution 

/* global data structure */ 
#define BUFSIZE  10 
item buffer[BUFSIZE]; 
int  in = out = 0; 

in out 

in out 

“in” only modified by producer 

“out” only modified by consumer 
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Interprocess Communication 

 Shared Memory 
Message Passing 
 Socket 
 Remote Procedure Calls  
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Message-Passing System 
 Mechanism for processes to communicate and 

synchronize their actions 
 IPC facility provides two operations: 

 Send(message) – message size fixed or variable 
 Receive(message) 

 Message system – processes communicate without 
resorting to shared variables 

 To communicate, processes need to 
 Establish a communication link 
 Exchange a message via send/receive 
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Message-Passing System 
 Implementation of communication link 
 physical (e.g., shared memory, HW bus, or network) 

 logical (e.g., logical properties) 
Direct or indirect communication 
Symmetric or asymmetric communication 
Blocking or non-blocking 
Automatic or explicit buffering 
Send by copy or send by reference 
Fixed-sized or variable-sized messages 
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Direct communication 
 Processes must name each other explicitly: 
 Send (P, message) – send a message to proc P 
 Receive (Q, message) – receive a message from 

process Q 
 Properties of communication link 
 Links are established automatically 
 One-to-One relationship between links and processes 
 The link may be unidirectional, but is usually bi-

directional 
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 Solution for producer-consumer problem: 
 
 
 
 
 
 

limited modularity: if the name of a process is 
changed, all old names should be found 
 

Direct communication 

/*producer*/ 
while (1) { 
 send (consumer, nextProduced); 
} 
/*consumer*/ 
while (1) { 
 receive (producer, nextConsumed); 
} 
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Indirect communication 
 Messages are directed and received from mailboxes 

(also referred to as ports) 
 Each mailbox has a unique ID 
 Processes can communicate if they share a mailbox 
 Send (A, message) – send a message to mailbox A 
 Receive (A, message) – receive a message from mailbox A 

 Properties of communication link 
 Link established only if processes share a common mailbox 
 Many-to-Many relationship between links and processes 
 Link may be unidirectional or bi-directional 
 Mailbox can be owned either by OS or processes 
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Indirect Communication 
 Mailbox sharing 

 
 
 

 Solutions 
 Allow a link to be associated with at most two processes 
 Allow only one process at a time to execute a receive 

operation 
 Allow the system to select arbitrarily a single receiver.  

Sender is notified who the receiver was 

P1 P2 P3 

Mailbox 

send recv? recv? 
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Synchronization 
 Message passing may be either blocking (synchronous) 

or non-blocking (asynchronous)  
 Blocking send: sender is blocked until the message is received 

by receiver or by the mailbox 
 Nonblocking send: sender sends the message and resumes 

operation 
 Blocking receive: receiver is blocked until the message is 

available 
 Nonblocking receive: receiver receives a valid message or a 

null 

 Buffer implementation 
 Zero capacity: blocking send/receive 
 Bounded capacity: if full, sender will be blocked 
 Unbounded capacity: sender never blocks 

 

sender receiver 
buffer 
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Interprocess Communication 

 Shared Memory 
Message Passing 
 Socket 
 Remote Procedure Calls 
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Sockets 
 A socket is identified by a 

concatenation of IP address 
and port number 

 Communication consists 
between a pair of sockets 

 Use 127.0.0.1 to refer itself 

Server 
(161.25.19.8) 

Socket 
(161.25.19.8:80) 

Client 
(146.86.5.20) 

Server  
(161.25.19.8) 

socket() 

bind() 

listen() 

accept() 

read() 

close() 

socket() 

connect() 

write() 

close() 

Block until client requests 

write() read() 

Well-known port 
161.25.19.8:80 

Data req. 

Data reply 

Assign port 
146.86.5.20:1625 

Client 
(146.86.5.20) 

Socket 
(146.86.5.20:1625) 
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Sockets 
 Considered as a low-level form of communication 

unstructured stream of bytes to be exchanged 
 Data parsing responsibility falls upon the server and 

the client applications 

Server 
Socket 

(161.25.19.8:80) 

Client 
Socket 

(146.86.5.20:1625) 

HTTP/1.1 200 OK 
Date: Mon, 23 May 2005 22:38:34 GMT  
Server: Apache/1.3.3.7 
Last-Modified: Wed, 08 Jan 2003 23:11:55 GMT  

GET /index.html HTTP/1.1  
Host: www.example.com  

HTTP example: 
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Remote Procedure Calls: RPC 
 Remote procedure call (RPC) abstracts procedure 

calls between processes on networked systems 
 allows programs to call procedures located on other 

machines (and other processes) 

 Stubs – client-side proxy for the actual procedure on 
the server 
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Client and Server Stubs 
Client stub: 
•Packs parameters into a message (i.e. parameter marshaling) 
•Calls OS to send directly to the server 
•Waits for result-return from the server 

Server stub: 
•Receives a call from a client 
•Unpacks the parameters  

•Calls the corresponding procedure 
•Returns results to the caller 
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Review Slides (3) 
 Shared memory vs. Message-passing system? 
 Direct vs. Indirect message-passing system? 
 Blocking vs. Non-Blocking? 
 Socket vs. RPC?  
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Reading Material & HW 
 Chap 3 
 HW (Problem set) 
 3.1 
 3.2 
 3.5 
 3.7 
 3.10 

 
 
 



Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 54 

Backup 
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Example: POSIX Shared Memory 
{ 
 /* allocate a R/W shared memory segment */ 
 char* segment_id = shmget(IPC_PRIVATE, 4096, S_IRUSR | S_IWUSR); 
 /* attach the shared memory segment */ 
 char* shared_memory = (char*) shmat(segment_id, NULL, 0); 
 /* write a message to the shared memory segment */ 
 sprintf(shared_memory, “Write to shared memory”); 
 /* print out the string from the shared memory segment */ 
 printf(“%s\n”, shared_memory); 
 /* detach the shared memory segment */ 
 shmdt(shared_memory); 
 /* remove the shared memory segment */ 
 shmctl(shared_memory, IPC_RMID, NULL); 
} 

size R/W mode 

R/W mode mem. location 
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Example: Mach Message Passing 
 Mach operating system 
 developed at CMU 
microkernel design 
most communications are carried out by 

messages and mailboxes (aka ports) 
 Problem: performance (data coping) 

 When each task (process) is created 
 kernel & notify mailboxes also created 
 kernel mailbox: channel between OS & task 
 notify mailbox: OS sends event notification to 
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Mach Mailbox 

 port-allocate: system call to create a mailbox 
 default buffer size: 8 messages 
 FIFO queueing 
 a message: one fixed-size header + variable-length data 

portion 
 implementing both blocking- & non-blocking send/receive 

Msg  
len 

to 
mailbox 

from 
mailbox type size value type size value . . . . . . 

header data 
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RPC Problems 
 Data representations  integer, floating? 
 Different address spaces  pointer? 
 Communication error duplicate or missing calls 
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RPC Problems: Data Representation Issue 
 Problem 

 IBM mainframes use EBCDIC char code and IBM PC uses 
ASCII code 

 Integer: one’s complement and 2’s complement 
 Floating-point numbers 
 Little endian and big endian 

 Solution 
 External data representation (XDR) 
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RPC Problems: Address Space Issue 
 A pointer is only meaningful in its address 

space 
 Solutions 
No pointer usage in RPC calls 
 Copy the entire pointed area (such as arrays or 

strings) 
Only suitable for bounded and known areas 
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RPC Problems: Communication Issue 
 RPCs may fail, or be duplicated and execute more than 

once, as a result of common network errors 
 at most once: prevent duplicate calls 

 Implemented by attaching a timestamp to each message 
 The server must keep a history large enough to ensure that 

repeated messages are detected 

 exact once: prevent missing calls 
 The server must acknowledge to the client that the RPC call 

was received and executed 
 The client must resend each RPC call periodically until the 

server receives the ACK 
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Pipes 
 One of the 1st IPC mechanism in early UNIX systems 
 Pipe is a special type of file 
 Issues in implementing 

 uni- or bi-directional? 
 half or full duplex? (travel in both directions 

simultaneously) 
 Must a relationship (parent – child) exist? 
 Over a network, or reside on the same machine? 

Read
-end 

write
-end 
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Ordinary Pipes 
 Also called anonymous pipes in Windows 
 Requires a parent-child relationship between the 

communicating processes 
 Implemented as a special file on Unix (via fork(), a child 

process inherits open files from its parent) 
 Can only be used between processes on the same machine 

 Unidirectional: two pipes must be used for two–way 
communication 
UNIX: 
  int fd[2]; 
  pipe(fd); 

Windows: 
  CreatePipe(&ReadHandle, &WriteHandle, &sa, 0) 
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Named Pipes 
 No parent-child relationship is required 
 Several processes can use it for communications  

 It may have several writers 

 Continue to exist after communicating processes exit 
 In Unix: 

 Also called FIFO 
 Communicating processes have to be on the same machine 

 In Windows: 
 bi-directional 
 Communicating processes can be on different machine 
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UNIX/Linux: Fork 
 Inherited from the parent:  

 process credentials 
 environment  
 stack  
 memory  
 open file descriptors  
 signal handling settings  
 scheduler class  
 process group ID  
 session ID  
 current working directory  
 root directory  
 file mode creation mask 

(umask)  
 resource limits  
 controlling terminal 

 Unique to the child:  
 process ID  
 different parent process ID  
 Own copy of file descriptors and 

directory streams.  
 process, text, data and other 

memory locks are NOT inherited.  
 process times, in the tms struct  
 resource utilizations are set to 0  
 pending signals initialized to the 

empty set  
 timers created by timer_create 

not inherited  
 asynchronous input or output 

operations not inherited 
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Remote Method Invocation 
 RMI is a Java mechanism similar to RPC 
 RMI allows a Java program on one machine to invoke 

a method on a remote object instead of a function 
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Distributed Objects 

A remote object with client-side proxy 

2-16 
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Static & Dynamic RMI 
 RMI = Remote Method Invocation 
 Invoke an object’s method through proxy 

 Static invocation 
 objectname.methodname(para) 
 If interfaces change, apps must be recompiled 

 Dynamic invocation 
 invoke(object, method, inpars, outpars) 
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