
Operating System:
Chap3 Processes Concept

National Tsing-Hua University
2016, Fall Semester

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 2

Outline
 Process Concept
 Process Scheduling
 Operations on Processes
 Interprocess Communication

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 3

Process Concept

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 4

Process Concept

 An operating system concurrently executes a variety
of programs (e.g Web browser, text editor, etc)

 Program — ______________________________
 Process — __

 A process includes:
 Code segment (text section)
 Data section— global variables
 Stack —temporary local variables and functions
 Heap —dynamic allocated variables or classes
 Current activity (program counter, register contents)
 A set of associated resources (e.g. open file handlers)

active entity: a program in execution in memory
passive entity: binary stored in disk

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 5

Process in Memory

temporary data (e.g.
function parameters,
return addresses,
local variables)

global variables

code

dynamic allocation
(e.g. class object,
pointer object)

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 6

Threads
 A.k.a lightweight process:

basic unit of CPU utilization

 All threads belonging to the
same process share
code section, data section,

and OS resources (e.g. open
files and signals)

 But each thread has its own
 thread ID, program counter,

register set, and a stack

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 7

Process State
 States
New: the process is being created
 Ready: the process is in the memory waiting to be

assigned to a processor
 Running: instructions are being executed by CPU
Waiting: the process is waiting for events to occur
 Terminated: the process has finished execution

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 8

Diagram of Process State

 Only one process is running on any processor at any instant
 However, many processes may be ready or waiting

New

Waiting

Ready

admitted

Running

scheduler dispatch

interrupt

Terminated exit

I/O or event wait I/O or event completion

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 9

Process Control Block (PCB)
Info. associated with each process
 Process state
 Program counter
 CPU registers
 CPU scheduling information
 (e.g. priority)
 Memory-management information
 (e.g. base/limit register)
 I/O status information
 Accounting information

To next PCB

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 10

executing

executing

executing

interrupt or system call

 process P0 operating system process P1
interrupt or system call

idle

idle

idle

save state into PCB0

reload state from PCB1

. . .
. . .

save state into PCB1

reload state from PCB0

Context Switch

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 11

Context Switch
 Context Switch: Kernel saves the state of the old

process and loads the saved state for the new process
 Context-switch time is purely overhead
 Switch time (about 1~1000 ms) depends on

 memory speed
 number of registers
 existence of special instructions

a single instruction to save/load all registers
 hardware support

multiple sets of registers (Sun UltraSPARC – a context
switch means changing register file pointer)

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 12

Review Slides (1)
 What’s the definition of a process?
 What’s the difference between process and

thread?
 What’s PCB? its contents?
 Process state
 Program counter
 CPU registers

 The kinds of process state?
New, Ready, Running, Waiting, Terminated

 What’s context switch?

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 13

Process Scheduling

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 14

Process Scheduling
 Multiprogramming: CPU runs process at all

times to maximize CPU utilization

 Time sharing: switch CPU frequently such that
users can interact with each program while it
is running

 Processes will have to wait until the CPU is
free and can be re-scheduled

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 15

Process Scheduling Queues
 Processes migrate between the various

queues (i.e. switch among states)

 Job queue (New State) – set of all processes
in the system

 Ready queue (Ready State) – set of all
processes residing in main memory, ready
and waiting to execute

 Device queue (Wait State)– set of processes
waiting for an I/O device

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 16

Process Scheduling Queues

I/O queue

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 17

Process Scheduling Diagram

ready queue CPU

I/O request I/O queue I/O

time slice
expired

fork a child child
executes

child
terminates

wait for an
interrupt

INT
occurs

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 18

Schedulers
 Short-term scheduler (CPU scheduler)– selects which process

should be executed and allocated CPU (Ready state  Run state)
 Long-term scheduler (job scheduler) – selects which processes

should be loaded into memory and brought into the ready queue
(New state  Ready state)

 Medium-term scheduler – selects which processes should be
swapped in/out memory (Ready state  Wait state)

CPU

Memory

Job4
Job3
Job2
Job1

Operating System CPU Scheduling
Job Scheduling

Job pool

Disk

Job swapping

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 19

Long-Term Scheduler

 Control degree of multiprogramming

 Execute less frequently (e.g. invoked only when a
process leaves the system or once several minutes)

 Select a good mix of CPU-bound & I/O-bound
processes to increase system overall performance

 UNIX/NT: no long-term scheduler
 Created process placed in memory for short-term scheduler
 Multiprogramming degree is bounded by hardware

limitation (e.g., # of terminals) or on the self-adjusting
nature of users

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 20

Short-Term Scheduler
 Execute quite frequently (e.g. once per 100ms)

 Must be efficient:
 if 10 ms for picking a job, 100 ms for such a pick,
 overhead = 10 / 110 = 9%

short-term long-term
ready queue CPU

I/O request I/O queue I/O

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 21

Medium-Term Scheduler
 swap out: removing processes from memory to reduce

the degree of multiprogramming
 swap in: reintroducing swap-out processes into memory
 Purpose: _________________,______________
 Most modern OS doesn’t have medium-term scheduler

because having sufficient physical memory or using
virtual memory

improve process mix free up memory

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 22

Operations on Processes

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 23

Tree of Processes
 Each process is identified by a unique

processor identifier (pid)
sched
pid=0

init
pid=1

pageout
pid=2

fsflush
pid=3

intd
pid=140

dtlogin
pid=251

Csh
pid=7778

Csh
pid=1400

ls
pid=2123

Netscape
pid=7785

cat
pid=2536

parent of p3

child of p0

UNIX: “ps -ael” will list complete
info of all active processes

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 24

Process Creation
 Resource sharing

 Parent and child processes share all resources
 Child process shares subset of parent’s resources
 Parent and child share no resources

 Two possibilities of execution
 Parent and children execute concurrently
 Parent waits until children terminate

 Two possibilities of address space
 Child duplicate of parent, communication via sharing variables
 Child has a program loaded into it, communication via

message passing

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 25

UNIX/Linux Process Creation
 fork system call

 Create a new (child) process
 The new process duplicates the address space of its parent
 Child & Parent execute concurrently after fork
 Child: return value of fork is 0
 Parent: return value of fork is PID of the child process

 execlp system call
 Load a new binary file into memory – destroying the old code

 wait system call
 The parent waits for one of its child processes to complete

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 26

UNIX/Linux Process Creation
 Memory space of fork():

 Old implementation: A’s child is an exact copy of parent
 Current implementation: use copy-on-write technique to

store differences in A’s child address space

Originally

free memory

B

free memory

A
kernel

free memory

B

free memory

A
kernel

A’s child

After A does
an fork

free memory

C

B

free memory

A
kernel

After the child
does an execlp

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 27

UNIX/Linux Example
#include <stdio.h>
void main()
{
 int A;
 /* fork another process */
 A = fork();

 if (A == 0) { /* child process */
 printf(“this is from child process\n”);
 execlp(“/bin/ls”, “ls”, NULL);

 } else { /* parent process */
 printf(“this is from parent process\n”);
 int pid = wait(&status);
 printf(“Child %d completes”, pid);
 }
 printf(“process ends %d\n”, A);
}

Output:
this is from child process
this is from parent process
a.out hello.c readme.txt
Child 32185 completes
process ends 32185

Chapter3 Processes Concept

Example Quiz:
 How many processes are created?
#include <stdio.h>
#include <unistd.h>
int main() {
 for (int i=0; i<3; i++){
 fork();
 }
 return 0;
}

Operating System Concepts – NTHU LSA Lab 28

P0

P0 P1

P0 P2 P1 P3

P0 P4 P2 P5 P1 P6 P3 P7

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 29

Process Termination
 Terminate when the last statement is executed or

exit() is called
 All resources of the process, including physical & virtual

memory, open files, I/O buffers, are deallocated by the OS

 Parent may terminate execution of children
processes by specifying its PID (abort)
 Child has exceeded allocated resources
 Task assigned to child is no longer required

 Cascading termination:
 killing (exiting) parent  killing (exiting) all its children

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 30

Review Slides (2)
 What’s long-term scheduler? features?
 What’s short-term scheduler? features?
 What’s medium-term scheduler? features?
 What’s the different between duplicate

address space and load program? Their
commands?

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 31

Interprocess
Communication (IPC)

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 32

Interprocess Communication
 IPC: a set of methods for the exchange of data

among multiple threads in one or more processes
 Independent process: cannot affect or be affected by

other processes
 Cooperating process: otherwise
 Purposes

 information sharing
 computation speedup (not always true…)

 convenience (performs several tasks at one time)

 modularity

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 33

Communication Methods
Msg Passing Shared Memory  Shared memory:

 Require more careful user
synchronization

 Implemented by memory
access: faster speed

 Use memory address to
access data

 Message passing:
 No conflict: more efficient
 for small data
 Use send/recv message
 Implemented by system call:
 slower speed

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 34

Communication Methods
 Sockets:

 A network connection
identified by IP & port

 Exchange unstructured
stream of bytes

 Remote Procedure Calls:
 Cause a procedure to

execute in another
address space

 Parameters and return
values are passed by
message

Server
(161.25.19.8)

Socket
(161.25.19.8:80)

Client
(146.86.5.20)

Socket
(146.86.5.20:1625)

val = server.method(A,B) bool method(A,B){
 ………..
}

Client Server

A, B, method

Boolean return value

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 35

Interprocess Communication

 Shared Memory
Message Passing
 Socket
 Remote Procedure Calls

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 36

Shared Memory
 Processes are responsible for…
 Establishing a region of shared memory

Typically, a shared-memory region resides in the address
space of the process creating the shared-memory segment
Participating processes must agree to remove memory
access constraint from OS

Determining the form of the data and the location
 Ensuring data are not written simultaneously by

processes

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 37

Consumer & Producer Problem

in

out

 Producer process produces information that is
consumed by a Consumer process

 Buffer as a circular array with size B
 next free: in
 first available: out
 empty: in = out
 full: (in+1) % B = out

 The solution allows at most (B-1) item in the buffer
 Otherwise, cannot tell the buffer is fall or empty

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 38

/*producer*/
while (1) {
 while (((in + 1) % BUFFER_SIZE) == out)
 ; //wait if buffer is full
 buffer[in] = nextProduced;
 in = (in + 1) % BUFFER_SIZE;
}
/*consumer*/
while (1) {
 while (in == out); //wait if buffer is empty
 nextConsumed = buffer[out];
 out = (out + 1) % BUFFER_SIZE;
}

Shared-Memory Solution

/* global data structure */
#define BUFSIZE 10
item buffer[BUFSIZE];
int in = out = 0;

in out

in out

“in” only modified by producer

“out” only modified by consumer

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 39

Interprocess Communication

 Shared Memory
Message Passing
 Socket
 Remote Procedure Calls

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 40

Message-Passing System
 Mechanism for processes to communicate and

synchronize their actions
 IPC facility provides two operations:

 Send(message) – message size fixed or variable
 Receive(message)

 Message system – processes communicate without
resorting to shared variables

 To communicate, processes need to
 Establish a communication link
 Exchange a message via send/receive

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 41

Message-Passing System
 Implementation of communication link
 physical (e.g., shared memory, HW bus, or network)

 logical (e.g., logical properties)
Direct or indirect communication
Symmetric or asymmetric communication
Blocking or non-blocking
Automatic or explicit buffering
Send by copy or send by reference
Fixed-sized or variable-sized messages

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 42

Direct communication
 Processes must name each other explicitly:
 Send (P, message) – send a message to proc P
 Receive (Q, message) – receive a message from

process Q
 Properties of communication link
 Links are established automatically
 One-to-One relationship between links and processes
 The link may be unidirectional, but is usually bi-

directional

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 43

 Solution for producer-consumer problem:

limited modularity: if the name of a process is
changed, all old names should be found

Direct communication

/*producer*/
while (1) {
 send (consumer, nextProduced);
}
/*consumer*/
while (1) {
 receive (producer, nextConsumed);
}

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 44

Indirect communication
 Messages are directed and received from mailboxes

(also referred to as ports)
 Each mailbox has a unique ID
 Processes can communicate if they share a mailbox
 Send (A, message) – send a message to mailbox A
 Receive (A, message) – receive a message from mailbox A

 Properties of communication link
 Link established only if processes share a common mailbox
 Many-to-Many relationship between links and processes
 Link may be unidirectional or bi-directional
 Mailbox can be owned either by OS or processes

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 45

Indirect Communication
 Mailbox sharing

 Solutions
 Allow a link to be associated with at most two processes
 Allow only one process at a time to execute a receive

operation
 Allow the system to select arbitrarily a single receiver.

Sender is notified who the receiver was

P1 P2 P3

Mailbox

send recv? recv?

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 46

Synchronization
 Message passing may be either blocking (synchronous)

or non-blocking (asynchronous)
 Blocking send: sender is blocked until the message is received

by receiver or by the mailbox
 Nonblocking send: sender sends the message and resumes

operation
 Blocking receive: receiver is blocked until the message is

available
 Nonblocking receive: receiver receives a valid message or a

null

 Buffer implementation
 Zero capacity: blocking send/receive
 Bounded capacity: if full, sender will be blocked
 Unbounded capacity: sender never blocks

sender receiver
buffer

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 47

Interprocess Communication

 Shared Memory
Message Passing
 Socket
 Remote Procedure Calls

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 48

Sockets
 A socket is identified by a

concatenation of IP address
and port number

 Communication consists
between a pair of sockets

 Use 127.0.0.1 to refer itself

Server
(161.25.19.8)

Socket
(161.25.19.8:80)

Client
(146.86.5.20)

Server
(161.25.19.8)

socket()

bind()

listen()

accept()

read()

close()

socket()

connect()

write()

close()

Block until client requests

write() read()

Well-known port
161.25.19.8:80

Data req.

Data reply

Assign port
146.86.5.20:1625

Client
(146.86.5.20)

Socket
(146.86.5.20:1625)

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 49

Sockets
 Considered as a low-level form of communication

unstructured stream of bytes to be exchanged
 Data parsing responsibility falls upon the server and

the client applications

Server
Socket

(161.25.19.8:80)

Client
Socket

(146.86.5.20:1625)

HTTP/1.1 200 OK
Date: Mon, 23 May 2005 22:38:34 GMT
Server: Apache/1.3.3.7
Last-Modified: Wed, 08 Jan 2003 23:11:55 GMT

GET /index.html HTTP/1.1
Host: www.example.com

HTTP example:

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 50

Remote Procedure Calls: RPC
 Remote procedure call (RPC) abstracts procedure

calls between processes on networked systems
 allows programs to call procedures located on other

machines (and other processes)

 Stubs – client-side proxy for the actual procedure on
the server

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 51

Client and Server Stubs
Client stub:
•Packs parameters into a message (i.e. parameter marshaling)
•Calls OS to send directly to the server
•Waits for result-return from the server

Server stub:
•Receives a call from a client
•Unpacks the parameters

•Calls the corresponding procedure
•Returns results to the caller

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 52

Review Slides (3)
 Shared memory vs. Message-passing system?
 Direct vs. Indirect message-passing system?
 Blocking vs. Non-Blocking?
 Socket vs. RPC?

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 53

Reading Material & HW
 Chap 3
 HW (Problem set)
 3.1
 3.2
 3.5
 3.7
 3.10

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 54

Backup

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 55

Example: POSIX Shared Memory
{
 /* allocate a R/W shared memory segment */
 char* segment_id = shmget(IPC_PRIVATE, 4096, S_IRUSR | S_IWUSR);
 /* attach the shared memory segment */
 char* shared_memory = (char*) shmat(segment_id, NULL, 0);
 /* write a message to the shared memory segment */
 sprintf(shared_memory, “Write to shared memory”);
 /* print out the string from the shared memory segment */
 printf(“%s\n”, shared_memory);
 /* detach the shared memory segment */
 shmdt(shared_memory);
 /* remove the shared memory segment */
 shmctl(shared_memory, IPC_RMID, NULL);
}

size R/W mode

R/W mode mem. location

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 56

Example: Mach Message Passing
 Mach operating system
 developed at CMU
microkernel design
most communications are carried out by

messages and mailboxes (aka ports)
 Problem: performance (data coping)

 When each task (process) is created
 kernel & notify mailboxes also created
 kernel mailbox: channel between OS & task
 notify mailbox: OS sends event notification to

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 57

Mach Mailbox

 port-allocate: system call to create a mailbox
 default buffer size: 8 messages
 FIFO queueing
 a message: one fixed-size header + variable-length data

portion
 implementing both blocking- & non-blocking send/receive

Msg
len

to
mailbox

from
mailbox type size value type size value

header data

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 58

RPC Problems
 Data representations  integer, floating?
 Different address spaces  pointer?
 Communication error duplicate or missing calls

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 59

RPC Problems: Data Representation Issue
 Problem

 IBM mainframes use EBCDIC char code and IBM PC uses
ASCII code

 Integer: one’s complement and 2’s complement
 Floating-point numbers
 Little endian and big endian

 Solution
 External data representation (XDR)

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 60

RPC Problems: Address Space Issue
 A pointer is only meaningful in its address

space
 Solutions
No pointer usage in RPC calls
 Copy the entire pointed area (such as arrays or

strings)
Only suitable for bounded and known areas

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 61

RPC Problems: Communication Issue
 RPCs may fail, or be duplicated and execute more than

once, as a result of common network errors
 at most once: prevent duplicate calls

 Implemented by attaching a timestamp to each message
 The server must keep a history large enough to ensure that

repeated messages are detected

 exact once: prevent missing calls
 The server must acknowledge to the client that the RPC call

was received and executed
 The client must resend each RPC call periodically until the

server receives the ACK

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 62

Pipes
 One of the 1st IPC mechanism in early UNIX systems
 Pipe is a special type of file
 Issues in implementing

 uni- or bi-directional?
 half or full duplex? (travel in both directions

simultaneously)
 Must a relationship (parent – child) exist?
 Over a network, or reside on the same machine?

Read
-end

write
-end

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 63

Ordinary Pipes
 Also called anonymous pipes in Windows
 Requires a parent-child relationship between the

communicating processes
 Implemented as a special file on Unix (via fork(), a child

process inherits open files from its parent)
 Can only be used between processes on the same machine

 Unidirectional: two pipes must be used for two–way
communication
UNIX:
 int fd[2];
 pipe(fd);

Windows:
 CreatePipe(&ReadHandle, &WriteHandle, &sa, 0)

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 64

Named Pipes
 No parent-child relationship is required
 Several processes can use it for communications

 It may have several writers

 Continue to exist after communicating processes exit
 In Unix:

 Also called FIFO
 Communicating processes have to be on the same machine

 In Windows:
 bi-directional
 Communicating processes can be on different machine

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 65

UNIX/Linux: Fork
 Inherited from the parent:

 process credentials
 environment
 stack
 memory
 open file descriptors
 signal handling settings
 scheduler class
 process group ID
 session ID
 current working directory
 root directory
 file mode creation mask

(umask)
 resource limits
 controlling terminal

 Unique to the child:
 process ID
 different parent process ID
 Own copy of file descriptors and

directory streams.
 process, text, data and other

memory locks are NOT inherited.
 process times, in the tms struct
 resource utilizations are set to 0
 pending signals initialized to the

empty set
 timers created by timer_create

not inherited
 asynchronous input or output

operations not inherited

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 66

Remote Method Invocation
 RMI is a Java mechanism similar to RPC
 RMI allows a Java program on one machine to invoke

a method on a remote object instead of a function

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 67

Distributed Objects

A remote object with client-side proxy

2-16

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 68

Static & Dynamic RMI
 RMI = Remote Method Invocation
 Invoke an object’s method through proxy

 Static invocation
 objectname.methodname(para)
 If interfaces change, apps must be recompiled

 Dynamic invocation
 invoke(object, method, inpars, outpars)

	Operating System:�Chap3 Processes Concept
	Outline
	Process Concept
	Process Concept
	Process in Memory
	Threads
	Process State
	Diagram of Process State
	Process Control Block (PCB)
	Context Switch
	Context Switch
	Review Slides (1)
	Process Scheduling
	Process Scheduling
	Process Scheduling Queues
	Process Scheduling Queues
	Process Scheduling Diagram
	Schedulers
	Long-Term Scheduler
	Short-Term Scheduler
	Medium-Term Scheduler
	Operations on Processes
	Tree of Processes
	Process Creation
	UNIX/Linux Process Creation
	UNIX/Linux Process Creation
	UNIX/Linux Example
	Example Quiz:
	Process Termination
	Review Slides (2)
	Interprocess Communication (IPC)�	
	Interprocess Communication
	Communication Methods
	Communication Methods
	Interprocess Communication
	Shared Memory
	Consumer & Producer Problem
	Shared-Memory Solution
	Interprocess Communication
	Message-Passing System
	Message-Passing System
	Direct communication
	Direct communication
	Indirect communication
	Indirect Communication
	Synchronization
	Interprocess Communication
	Sockets
	Sockets
	Remote Procedure Calls: RPC
	Client and Server Stubs
	Review Slides (3)
	Reading Material & HW
	Backup
	Example: POSIX Shared Memory
	Example: Mach Message Passing
	Mach Mailbox
	RPC Problems
	RPC Problems: Data Representation Issue
	RPC Problems: Address Space Issue
	RPC Problems: Communication Issue
	Pipes
	Ordinary Pipes
	Named Pipes
	UNIX/Linux: Fork
	Remote Method Invocation
	Distributed Objects
	Static & Dynamic RMI

