
Operating System:
Chap3 Processes Concept

National Tsing-Hua University
2016, Fall Semester

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 2

Outline
 Process Concept
 Process Scheduling
 Operations on Processes
 Interprocess Communication

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 3

Process Concept

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 4

Process Concept

 An operating system concurrently executes a variety
of programs (e.g Web browser, text editor, etc)

 Program — ______________________________
 Process — __

 A process includes:
 Code segment (text section)
 Data section— global variables
 Stack —temporary local variables and functions
 Heap —dynamic allocated variables or classes
 Current activity (program counter, register contents)
 A set of associated resources (e.g. open file handlers)

active entity: a program in execution in memory
passive entity: binary stored in disk

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 5

Process in Memory

temporary data (e.g.
function parameters,
return addresses,
local variables)

global variables

code

dynamic allocation
(e.g. class object,
pointer object)

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 6

Threads
 A.k.a lightweight process:

basic unit of CPU utilization

 All threads belonging to the
same process share
code section, data section,

and OS resources (e.g. open
files and signals)

 But each thread has its own
 thread ID, program counter,

register set, and a stack

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 7

Process State
 States
New: the process is being created
 Ready: the process is in the memory waiting to be

assigned to a processor
 Running: instructions are being executed by CPU
Waiting: the process is waiting for events to occur
 Terminated: the process has finished execution

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 8

Diagram of Process State

 Only one process is running on any processor at any instant
 However, many processes may be ready or waiting

New

Waiting

Ready

admitted

Running

scheduler dispatch

interrupt

Terminated exit

I/O or event wait I/O or event completion

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 9

Process Control Block (PCB)
Info. associated with each process
 Process state
 Program counter
 CPU registers
 CPU scheduling information
 (e.g. priority)
 Memory-management information
 (e.g. base/limit register)
 I/O status information
 Accounting information

To next PCB

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 10

executing

executing

executing

interrupt or system call

 process P0 operating system process P1
interrupt or system call

idle

idle

idle

save state into PCB0

reload state from PCB1

. . .
. . .

save state into PCB1

reload state from PCB0

Context Switch

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 11

Context Switch
 Context Switch: Kernel saves the state of the old

process and loads the saved state for the new process
 Context-switch time is purely overhead
 Switch time (about 1~1000 ms) depends on

 memory speed
 number of registers
 existence of special instructions

a single instruction to save/load all registers
 hardware support

multiple sets of registers (Sun UltraSPARC – a context
switch means changing register file pointer)

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 12

Review Slides (1)
 What’s the definition of a process?
 What’s the difference between process and

thread?
 What’s PCB? its contents?
 Process state
 Program counter
 CPU registers

 The kinds of process state?
New, Ready, Running, Waiting, Terminated

 What’s context switch?

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 13

Process Scheduling

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 14

Process Scheduling
 Multiprogramming: CPU runs process at all

times to maximize CPU utilization

 Time sharing: switch CPU frequently such that
users can interact with each program while it
is running

 Processes will have to wait until the CPU is
free and can be re-scheduled

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 15

Process Scheduling Queues
 Processes migrate between the various

queues (i.e. switch among states)

 Job queue (New State) – set of all processes
in the system

 Ready queue (Ready State) – set of all
processes residing in main memory, ready
and waiting to execute

 Device queue (Wait State)– set of processes
waiting for an I/O device

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 16

Process Scheduling Queues

I/O queue

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 17

Process Scheduling Diagram

ready queue CPU

I/O request I/O queue I/O

time slice
expired

fork a child child
executes

child
terminates

wait for an
interrupt

INT
occurs

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 18

Schedulers
 Short-term scheduler (CPU scheduler)– selects which process

should be executed and allocated CPU (Ready state Run state)
 Long-term scheduler (job scheduler) – selects which processes

should be loaded into memory and brought into the ready queue
(New state Ready state)

 Medium-term scheduler – selects which processes should be
swapped in/out memory (Ready state Wait state)

CPU

Memory

Job4
Job3
Job2
Job1

Operating System CPU Scheduling
Job Scheduling

Job pool

Disk

Job swapping

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 19

Long-Term Scheduler

 Control degree of multiprogramming

 Execute less frequently (e.g. invoked only when a
process leaves the system or once several minutes)

 Select a good mix of CPU-bound & I/O-bound
processes to increase system overall performance

 UNIX/NT: no long-term scheduler
 Created process placed in memory for short-term scheduler
 Multiprogramming degree is bounded by hardware

limitation (e.g., # of terminals) or on the self-adjusting
nature of users

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 20

Short-Term Scheduler
 Execute quite frequently (e.g. once per 100ms)

 Must be efficient:
 if 10 ms for picking a job, 100 ms for such a pick,
 overhead = 10 / 110 = 9%

short-term long-term
ready queue CPU

I/O request I/O queue I/O

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 21

Medium-Term Scheduler
 swap out: removing processes from memory to reduce

the degree of multiprogramming
 swap in: reintroducing swap-out processes into memory
 Purpose: _________________,______________
 Most modern OS doesn’t have medium-term scheduler

because having sufficient physical memory or using
virtual memory

improve process mix free up memory

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 22

Operations on Processes

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 23

Tree of Processes
 Each process is identified by a unique

processor identifier (pid)
sched
pid=0

init
pid=1

pageout
pid=2

fsflush
pid=3

intd
pid=140

dtlogin
pid=251

Csh
pid=7778

Csh
pid=1400

ls
pid=2123

Netscape
pid=7785

cat
pid=2536

parent of p3

child of p0

UNIX: “ps -ael” will list complete
info of all active processes

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 24

Process Creation
 Resource sharing

 Parent and child processes share all resources
 Child process shares subset of parent’s resources
 Parent and child share no resources

 Two possibilities of execution
 Parent and children execute concurrently
 Parent waits until children terminate

 Two possibilities of address space
 Child duplicate of parent, communication via sharing variables
 Child has a program loaded into it, communication via

message passing

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 25

UNIX/Linux Process Creation
 fork system call

 Create a new (child) process
 The new process duplicates the address space of its parent
 Child & Parent execute concurrently after fork
 Child: return value of fork is 0
 Parent: return value of fork is PID of the child process

 execlp system call
 Load a new binary file into memory – destroying the old code

 wait system call
 The parent waits for one of its child processes to complete

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 26

UNIX/Linux Process Creation
 Memory space of fork():

 Old implementation: A’s child is an exact copy of parent
 Current implementation: use copy-on-write technique to

store differences in A’s child address space

Originally

free memory

B

free memory

A
kernel

free memory

B

free memory

A
kernel

A’s child

After A does
an fork

free memory

C

B

free memory

A
kernel

After the child
does an execlp

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 27

UNIX/Linux Example
#include <stdio.h>
void main()
{
 int A;
 /* fork another process */
 A = fork();

 if (A == 0) { /* child process */
 printf(“this is from child process\n”);
 execlp(“/bin/ls”, “ls”, NULL);

 } else { /* parent process */
 printf(“this is from parent process\n”);
 int pid = wait(&status);
 printf(“Child %d completes”, pid);
 }
 printf(“process ends %d\n”, A);
}

Output:
this is from child process
this is from parent process
a.out hello.c readme.txt
Child 32185 completes
process ends 32185

Chapter3 Processes Concept

Example Quiz:
 How many processes are created?
#include <stdio.h>
#include <unistd.h>
int main() {
 for (int i=0; i<3; i++){
 fork();
 }
 return 0;
}

Operating System Concepts – NTHU LSA Lab 28

P0

P0 P1

P0 P2 P1 P3

P0 P4 P2 P5 P1 P6 P3 P7

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 29

Process Termination
 Terminate when the last statement is executed or

exit() is called
 All resources of the process, including physical & virtual

memory, open files, I/O buffers, are deallocated by the OS

 Parent may terminate execution of children
processes by specifying its PID (abort)
 Child has exceeded allocated resources
 Task assigned to child is no longer required

 Cascading termination:
 killing (exiting) parent killing (exiting) all its children

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 30

Review Slides (2)
 What’s long-term scheduler? features?
 What’s short-term scheduler? features?
 What’s medium-term scheduler? features?
 What’s the different between duplicate

address space and load program? Their
commands?

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 31

Interprocess
Communication (IPC)

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 32

Interprocess Communication
 IPC: a set of methods for the exchange of data

among multiple threads in one or more processes
 Independent process: cannot affect or be affected by

other processes
 Cooperating process: otherwise
 Purposes

 information sharing
 computation speedup (not always true…)

 convenience (performs several tasks at one time)

 modularity

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 33

Communication Methods
Msg Passing Shared Memory Shared memory:

 Require more careful user
synchronization

 Implemented by memory
access: faster speed

 Use memory address to
access data

 Message passing:
 No conflict: more efficient
 for small data
 Use send/recv message
 Implemented by system call:
 slower speed

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 34

Communication Methods
 Sockets:

 A network connection
identified by IP & port

 Exchange unstructured
stream of bytes

 Remote Procedure Calls:
 Cause a procedure to

execute in another
address space

 Parameters and return
values are passed by
message

Server
(161.25.19.8)

Socket
(161.25.19.8:80)

Client
(146.86.5.20)

Socket
(146.86.5.20:1625)

val = server.method(A,B) bool method(A,B){
 ………..
}

Client Server

A, B, method

Boolean return value

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 35

Interprocess Communication

 Shared Memory
Message Passing
 Socket
 Remote Procedure Calls

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 36

Shared Memory
 Processes are responsible for…
 Establishing a region of shared memory

Typically, a shared-memory region resides in the address
space of the process creating the shared-memory segment
Participating processes must agree to remove memory
access constraint from OS

Determining the form of the data and the location
 Ensuring data are not written simultaneously by

processes

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 37

Consumer & Producer Problem

in

out

 Producer process produces information that is
consumed by a Consumer process

 Buffer as a circular array with size B
 next free: in
 first available: out
 empty: in = out
 full: (in+1) % B = out

 The solution allows at most (B-1) item in the buffer
 Otherwise, cannot tell the buffer is fall or empty

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 38

/*producer*/
while (1) {
 while (((in + 1) % BUFFER_SIZE) == out)
 ; //wait if buffer is full
 buffer[in] = nextProduced;
 in = (in + 1) % BUFFER_SIZE;
}
/*consumer*/
while (1) {
 while (in == out); //wait if buffer is empty
 nextConsumed = buffer[out];
 out = (out + 1) % BUFFER_SIZE;
}

Shared-Memory Solution

/* global data structure */
#define BUFSIZE 10
item buffer[BUFSIZE];
int in = out = 0;

in out

in out

“in” only modified by producer

“out” only modified by consumer

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 39

Interprocess Communication

 Shared Memory
Message Passing
 Socket
 Remote Procedure Calls

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 40

Message-Passing System
 Mechanism for processes to communicate and

synchronize their actions
 IPC facility provides two operations:

 Send(message) – message size fixed or variable
 Receive(message)

 Message system – processes communicate without
resorting to shared variables

 To communicate, processes need to
 Establish a communication link
 Exchange a message via send/receive

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 41

Message-Passing System
 Implementation of communication link
 physical (e.g., shared memory, HW bus, or network)

 logical (e.g., logical properties)
Direct or indirect communication
Symmetric or asymmetric communication
Blocking or non-blocking
Automatic or explicit buffering
Send by copy or send by reference
Fixed-sized or variable-sized messages

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 42

Direct communication
 Processes must name each other explicitly:
 Send (P, message) – send a message to proc P
 Receive (Q, message) – receive a message from

process Q
 Properties of communication link
 Links are established automatically
 One-to-One relationship between links and processes
 The link may be unidirectional, but is usually bi-

directional

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 43

 Solution for producer-consumer problem:

limited modularity: if the name of a process is
changed, all old names should be found

Direct communication

/*producer*/
while (1) {
 send (consumer, nextProduced);
}
/*consumer*/
while (1) {
 receive (producer, nextConsumed);
}

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 44

Indirect communication
 Messages are directed and received from mailboxes

(also referred to as ports)
 Each mailbox has a unique ID
 Processes can communicate if they share a mailbox
 Send (A, message) – send a message to mailbox A
 Receive (A, message) – receive a message from mailbox A

 Properties of communication link
 Link established only if processes share a common mailbox
 Many-to-Many relationship between links and processes
 Link may be unidirectional or bi-directional
 Mailbox can be owned either by OS or processes

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 45

Indirect Communication
 Mailbox sharing

 Solutions
 Allow a link to be associated with at most two processes
 Allow only one process at a time to execute a receive

operation
 Allow the system to select arbitrarily a single receiver.

Sender is notified who the receiver was

P1 P2 P3

Mailbox

send recv? recv?

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 46

Synchronization
 Message passing may be either blocking (synchronous)

or non-blocking (asynchronous)
 Blocking send: sender is blocked until the message is received

by receiver or by the mailbox
 Nonblocking send: sender sends the message and resumes

operation
 Blocking receive: receiver is blocked until the message is

available
 Nonblocking receive: receiver receives a valid message or a

null

 Buffer implementation
 Zero capacity: blocking send/receive
 Bounded capacity: if full, sender will be blocked
 Unbounded capacity: sender never blocks

sender receiver
buffer

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 47

Interprocess Communication

 Shared Memory
Message Passing
 Socket
 Remote Procedure Calls

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 48

Sockets
 A socket is identified by a

concatenation of IP address
and port number

 Communication consists
between a pair of sockets

 Use 127.0.0.1 to refer itself

Server
(161.25.19.8)

Socket
(161.25.19.8:80)

Client
(146.86.5.20)

Server
(161.25.19.8)

socket()

bind()

listen()

accept()

read()

close()

socket()

connect()

write()

close()

Block until client requests

write() read()

Well-known port
161.25.19.8:80

Data req.

Data reply

Assign port
146.86.5.20:1625

Client
(146.86.5.20)

Socket
(146.86.5.20:1625)

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 49

Sockets
 Considered as a low-level form of communication

unstructured stream of bytes to be exchanged
 Data parsing responsibility falls upon the server and

the client applications

Server
Socket

(161.25.19.8:80)

Client
Socket

(146.86.5.20:1625)

HTTP/1.1 200 OK
Date: Mon, 23 May 2005 22:38:34 GMT
Server: Apache/1.3.3.7
Last-Modified: Wed, 08 Jan 2003 23:11:55 GMT

GET /index.html HTTP/1.1
Host: www.example.com

HTTP example:

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 50

Remote Procedure Calls: RPC
 Remote procedure call (RPC) abstracts procedure

calls between processes on networked systems
 allows programs to call procedures located on other

machines (and other processes)

 Stubs – client-side proxy for the actual procedure on
the server

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 51

Client and Server Stubs
Client stub:
•Packs parameters into a message (i.e. parameter marshaling)
•Calls OS to send directly to the server
•Waits for result-return from the server

Server stub:
•Receives a call from a client
•Unpacks the parameters

•Calls the corresponding procedure
•Returns results to the caller

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 52

Review Slides (3)
 Shared memory vs. Message-passing system?
 Direct vs. Indirect message-passing system?
 Blocking vs. Non-Blocking?
 Socket vs. RPC?

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 53

Reading Material & HW
 Chap 3
 HW (Problem set)
 3.1
 3.2
 3.5
 3.7
 3.10

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 54

Backup

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 55

Example: POSIX Shared Memory
{
 /* allocate a R/W shared memory segment */
 char* segment_id = shmget(IPC_PRIVATE, 4096, S_IRUSR | S_IWUSR);
 /* attach the shared memory segment */
 char* shared_memory = (char*) shmat(segment_id, NULL, 0);
 /* write a message to the shared memory segment */
 sprintf(shared_memory, “Write to shared memory”);
 /* print out the string from the shared memory segment */
 printf(“%s\n”, shared_memory);
 /* detach the shared memory segment */
 shmdt(shared_memory);
 /* remove the shared memory segment */
 shmctl(shared_memory, IPC_RMID, NULL);
}

size R/W mode

R/W mode mem. location

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 56

Example: Mach Message Passing
 Mach operating system
 developed at CMU
microkernel design
most communications are carried out by

messages and mailboxes (aka ports)
 Problem: performance (data coping)

 When each task (process) is created
 kernel & notify mailboxes also created
 kernel mailbox: channel between OS & task
 notify mailbox: OS sends event notification to

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 57

Mach Mailbox

 port-allocate: system call to create a mailbox
 default buffer size: 8 messages
 FIFO queueing
 a message: one fixed-size header + variable-length data

portion
 implementing both blocking- & non-blocking send/receive

Msg
len

to
mailbox

from
mailbox type size value type size value

header data

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 58

RPC Problems
 Data representations integer, floating?
 Different address spaces pointer?
 Communication error duplicate or missing calls

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 59

RPC Problems: Data Representation Issue
 Problem

 IBM mainframes use EBCDIC char code and IBM PC uses
ASCII code

 Integer: one’s complement and 2’s complement
 Floating-point numbers
 Little endian and big endian

 Solution
 External data representation (XDR)

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 60

RPC Problems: Address Space Issue
 A pointer is only meaningful in its address

space
 Solutions
No pointer usage in RPC calls
 Copy the entire pointed area (such as arrays or

strings)
Only suitable for bounded and known areas

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 61

RPC Problems: Communication Issue
 RPCs may fail, or be duplicated and execute more than

once, as a result of common network errors
 at most once: prevent duplicate calls

 Implemented by attaching a timestamp to each message
 The server must keep a history large enough to ensure that

repeated messages are detected

 exact once: prevent missing calls
 The server must acknowledge to the client that the RPC call

was received and executed
 The client must resend each RPC call periodically until the

server receives the ACK

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 62

Pipes
 One of the 1st IPC mechanism in early UNIX systems
 Pipe is a special type of file
 Issues in implementing

 uni- or bi-directional?
 half or full duplex? (travel in both directions

simultaneously)
 Must a relationship (parent – child) exist?
 Over a network, or reside on the same machine?

Read
-end

write
-end

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 63

Ordinary Pipes
 Also called anonymous pipes in Windows
 Requires a parent-child relationship between the

communicating processes
 Implemented as a special file on Unix (via fork(), a child

process inherits open files from its parent)
 Can only be used between processes on the same machine

 Unidirectional: two pipes must be used for two–way
communication
UNIX:
 int fd[2];
 pipe(fd);

Windows:
 CreatePipe(&ReadHandle, &WriteHandle, &sa, 0)

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 64

Named Pipes
 No parent-child relationship is required
 Several processes can use it for communications

 It may have several writers

 Continue to exist after communicating processes exit
 In Unix:

 Also called FIFO
 Communicating processes have to be on the same machine

 In Windows:
 bi-directional
 Communicating processes can be on different machine

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 65

UNIX/Linux: Fork
 Inherited from the parent:

 process credentials
 environment
 stack
 memory
 open file descriptors
 signal handling settings
 scheduler class
 process group ID
 session ID
 current working directory
 root directory
 file mode creation mask

(umask)
 resource limits
 controlling terminal

 Unique to the child:
 process ID
 different parent process ID
 Own copy of file descriptors and

directory streams.
 process, text, data and other

memory locks are NOT inherited.
 process times, in the tms struct
 resource utilizations are set to 0
 pending signals initialized to the

empty set
 timers created by timer_create

not inherited
 asynchronous input or output

operations not inherited

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 66

Remote Method Invocation
 RMI is a Java mechanism similar to RPC
 RMI allows a Java program on one machine to invoke

a method on a remote object instead of a function

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 67

Distributed Objects

A remote object with client-side proxy

2-16

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 68

Static & Dynamic RMI
 RMI = Remote Method Invocation
 Invoke an object’s method through proxy

 Static invocation
 objectname.methodname(para)
 If interfaces change, apps must be recompiled

 Dynamic invocation
 invoke(object, method, inpars, outpars)

	Operating System:�Chap3 Processes Concept
	Outline
	Process Concept
	Process Concept
	Process in Memory
	Threads
	Process State
	Diagram of Process State
	Process Control Block (PCB)
	Context Switch
	Context Switch
	Review Slides (1)
	Process Scheduling
	Process Scheduling
	Process Scheduling Queues
	Process Scheduling Queues
	Process Scheduling Diagram
	Schedulers
	Long-Term Scheduler
	Short-Term Scheduler
	Medium-Term Scheduler
	Operations on Processes
	Tree of Processes
	Process Creation
	UNIX/Linux Process Creation
	UNIX/Linux Process Creation
	UNIX/Linux Example
	Example Quiz:
	Process Termination
	Review Slides (2)
	Interprocess Communication (IPC)�	
	Interprocess Communication
	Communication Methods
	Communication Methods
	Interprocess Communication
	Shared Memory
	Consumer & Producer Problem
	Shared-Memory Solution
	Interprocess Communication
	Message-Passing System
	Message-Passing System
	Direct communication
	Direct communication
	Indirect communication
	Indirect Communication
	Synchronization
	Interprocess Communication
	Sockets
	Sockets
	Remote Procedure Calls: RPC
	Client and Server Stubs
	Review Slides (3)
	Reading Material & HW
	Backup
	Example: POSIX Shared Memory
	Example: Mach Message Passing
	Mach Mailbox
	RPC Problems
	RPC Problems: Data Representation Issue
	RPC Problems: Address Space Issue
	RPC Problems: Communication Issue
	Pipes
	Ordinary Pipes
	Named Pipes
	UNIX/Linux: Fork
	Remote Method Invocation
	Distributed Objects
	Static & Dynamic RMI

